Skip to main content

Newsday: Practical AI, Data Governance, and Tech modernization with Vik Patel and Sarah Richardson

Vik Patel, COO at TIDO joins Sarah on This Week Health Newsday. Vik shares his journey from hospital IT to founding TIDO, discussing the nuanced challenges of integrating AI and the role of strong governance frameworks in avoiding unintended biases. Together, we tackle questions of strategic prioritization, from the intricacies of data migration and legacy archiving to the pressing need for reliable, responsive tech solutions in high-stakes clinical environments. Through the lens of real-world applications, the episode raises important considerations about balancing innovation with practicality in healthcare IT.

Key Points:

  • 04:09 The Importance of AI Governance in Healthcare
  • 07:27 Challenges and Solutions in Healthcare IT
  • 20:00 Practical AI Applications and Integration
  • 30:49 Conclusion and Final Thoughts

News articles:

This Week Health Linkedin

Alex’s Lemonade Stand: Foundation for Childhood Cancer Donate

Rise of the [Diagnostic] AI Machines!

Radiologist reviewing diagnostic imaging

Are we ready to welcome our AI overlords into healthcare yet? Will we welcome a fully autonomous Dr. Crusher? We’re not likely ready to completely abandon our human healers, but there have been a variety of algorithms and machine learning applications that have been creeping their way into our clinical specialties for many years now. The first AI algorithm was approved by the FDA in 1995, in the beginning of 2023 there are 520. The specialty with the largest number? Radiology! Check out this article from HealthExec, it provides some more detail on the approval and advantages of AI in imaging.

Radiology, and similar specialties that utilize imaging, have long embraced computer systems to improve quality, productivity, and sharing. The complexity behind the scenes of these systems can be quite surprising. Once an image is captured it may still go through multiple systems just to be viewed, PAC Systems, VNA, Dicom viewers, the route is anything but direct. If we want to add another step in the process to have the image analyzed, we are faced with yet another connection.

In a previous blog post we pointed out the challenges that staff face when one of these systems aren’t communicating, these certainly impact our physicians as well. As we add more diagnostic solutions to aid our physicians in treating patients, we want to ensure that their time is actually spent doing what they are trained for. The average radiologist makes roughly $300,000 per year, if we assume that radiologist works 40 hours per week, that’s about $144 per hour.

What happens when the machines stop talking? Likely the radiologist calls the help desk… 5 minutes on hold ($12), they will take 3 minutes to explain the problem to the help desk person ($7.20), who will then transfer them to a specialist where they take another 5 minutes talking over the problem ($12). Helpdesk will then forward the issue to multiple analysts and integration team. At-least 2 different analysts getting pulled into diagnosing the issue. Typically, integration and system analysts make 90k-130k per year or on average $50 per hour. These 2 analysts will work on this issue for about 30min ($100) to diagnose the issue. $131.20 may not seem like a significant amount, but now that radiologist may not be reviewing images, may not be discussing treatments with patients, they may not be doing what they’ve been trained to do. If the radiologist is only 50% as productive without this solution, every hour of outage costs $132…  That’s just for one Radiologist. And typically system issues affect all users. So once you multiply the outage costs for all radiologists and other team members it really adds up fast. There can also be significant downstream impacts to other services waiting on imaging as well that become harder to calculate.

Moving beyond the frustration of the healthcare teams, there can be a detrimental impact to patient satisfaction as well. As results are delayed and the team gets backed up, every hour of delay adds to the patient’s anxiety and fear. Anxiety and fear are not feelings we want our patients to experience, we want them to have confidence in our teams and systems.

Automated applications and integration monitoring can help quickly resolve these problems. With early notifications to the right team in a timely manner, problems can be quickly resolved to minimize downtime impacts. For over 10 years Tido Inc. has been partnering with health systems to help maximize their IT systems and quickly resolve issues as they arise, often before the end user even notices. Contact us today and so we can talk about how we can help you keep your systems working for your clinical teams.

Have the holidays driven us crazy? Crazy about AI maybe!

AI in Healthcare

Have you heard all the rage in AI? ChatGPT was making the rounds last few weeks as it was open to the public to play around with. The website is pretty cool, but it did take me a few days to get on it to play around due to traffic. For last week’s blog post I decided to hop on the bandwagon and see if Artificial Intelligence could replace a content writer’s Human Intelligence (insert sarcastic comment). Don’t tell the boss I did this though, AI doesn’t have bills to pay. Seriously though, the other blog post last week was written by ChatGPT.

Whether AI, ML, or other letter combination when it comes to advanced computing, there is no doubt that language processing will find it’s way more and more into healthcare. How do I know this? Because AI told me so, go read the other post!

Integrating AI effectively into the clinical space can help nursing in a variety of ways. It can be used to aggregate information on a single patient about their current visit and past visits to help guide interventions. It can also be used to effectively aggregate patient data from large populations to help study the effectiveness of new interventions vs past interventions.

Maybe we use the AI to write custom discharge instructions that are patient specific and relevant to their care? Starting off with a basic template this can be really powerful to drive better engagement and adherence to instructions. Current discharge instructions are often pages long with information dispersed throughout a large packet, providing a succinct summary can make it much easier for patients.

ChatGPT was initially devised as a chat bot, often rudimentary forms of chatbots can be found for patient intake for medical practices, urgent care, or to guide patients toward specialists. If we can better aggregate these sessions into a basic medical history or offer guidance toward potential diagnosis, then there can be significant time savings just on the nursing triage.

Pretty cool stuff that has the potential to really improve healthcare by helping the clinician and the patient alike.

With integrating any computer process automation there are several concerns that arise.

What is the reference source material? In the case of ChatGPT it uses large databases of published material, this can include unverified sources or opinion pieces. With any AI/ML, knowing the referenced source will be important.

Is the output relevant? AI can be confused, just like me, but we often use slang terms that AI may not recognize, this can lead to some weird output. The output definitely needs to be reviewed by professionals.  In the other post there are number of inaccuracies when it comes to the semantics, but they do matter.

How will it be integrated? Is it clear to patients when they are interacting with AI vs. a real human? If not it can be upsetting and cause patients to lose faith in the care system.

How much do we rely on AI? FDA regulations are starting to address this in terms of decision support, but how far AI goes into making patient care and treatment decisions that may fall into a gray area that can be difficult to navigate and ultimately requires a trained professional to adjudicate.

Tido Inc can help your organization answer these questions and help to integrate or develop applications so your organization can effectively leverage AI and ML to help improve clinical workflows and experience.  Now let’s see how much Holiday shopping has messed with my Amazon algorithms!

AI will revolutionize nursing! – Written by AI

AI in Healthcare

As we continue to advance in the field of artificial intelligence (AI), it’s becoming increasingly clear that this technology has the potential to revolutionize the way we approach healthcare, including the field of nursing. In the next few years, we can expect to see AI being used in a wide range of applications, from improving the accuracy of medical diagnoses to helping nurses manage their workloads more effectively.

One of the most exciting ways that AI is set to transform nursing is through its ability to improve the accuracy of medical diagnoses. AI algorithms are capable of analyzing vast amounts of data, including medical images and test results, to identify patterns and make predictions about a patient’s condition. This can help nurses to make more accurate diagnoses, and it can also help to identify potential health problems before they become more serious.

In addition to improving diagnostic accuracy, AI can also be used to help nurses manage their workloads more effectively. By analyzing data on patient visits and treatment outcomes, AI algorithms can help to identify trends and patterns that can be used to improve the efficiency of healthcare delivery. This can help to reduce wait times and improve patient outcomes, while also allowing nurses to focus on the patients who need their help the most.

Another way that AI is set to transform nursing is through its ability to improve the effectiveness of certain treatments. AI algorithms can be used to analyze the data from clinical trials and other studies to identify the most effective treatments for specific conditions. This can help nurses to make more informed decisions about which treatments to prescribe to their patients, which can lead to better health outcomes.

Overall, the potential of AI to transform nursing is enormous. As we continue to develop and refine these technologies, we can expect to see a wide range of benefits for both patients and nurses. Whether it’s improving diagnostic accuracy, helping nurses manage their workloads, or identifying the most effective treatments for specific conditions, AI has the potential to make a huge impact on the field of nursing.

**This blog post written by AI, I was busy and had holiday shopping to do.  Here was the request:  “Write a 500 word blog post on how AI will transform nursing in the style of Johnathan Klaus”

Tido Inc. can help with digital strategy and custom applications!

Tido’s Trailblazing Tech Bulletin – Issue #1 Digital Transformations

health care applicationsIssue #1—Digital Transformations

April 20 2022

Hello everyone! We’re pleased to welcome you to the very first issue of Trailblazing Tech from Tido. 

From now on, you’ll receive exciting monthly updates that dig into cutting-edge health tech topics, such as: the future of digital health, innovative interoperability, mobile and web apps, automated monitoring services, and—of course—some juicy tidbits about what’s new at Tido.

So, from the bottom of our digital hearts, thank you for embarking on this journey with us. Wishing you all an amazing April, and a splendid spring season! And we hope you enjoy Tido’s insights on extraordinary technologies that are revolutionizing the healthcare industry.

 

End-users are actually superior to healthcare professionals at rooting out application and integration issues. Why are we passing the buck to them? We can do better!

As it turns out, 95% of integration issues in hospital applications are manually identified by end-users. On average, it takes 35 frustrating minutes for end-users to identify and report issues to the IT help desk—and a gruelling 55 minutes for staff members or vendors to initiate a fix for the issue. 

That’s why we’re working with healthcare teams to use Azure Monitor for automated system monitoring, transforming their digital services to drastically reduce reliance on manual reporting, while also significantly improving customer service. The positive feedback we’ve received is truly incredible!

 

Digital transformation is accelerating in healthcare, but don’t worry—you can keep up! How to provide the best user experience in web and mobile applications.

The COVID-19 pandemic has accelerated digital transformation in every major sector, vastly increasing our reliance on technology to meet many of our daily needs. And healthcare is no exception! 

Our health systems have greatly expanded their digital footprint to better serve our patients, empowering them to perform routine tasks without leaving the comfort of their home—such as paying bills, requesting medication refills, and even receiving personal health updates digitally.

But the process of fine-tuning the user experience has been—to put it mildly—quite complicated. To help other healthcare providers to navigate this important issue, Baptist Health’s team reveals how they’re using web and mobile test automation as a key part of their ongoing digital transformation.

 

The gift of health tech for your healthy ears! Check out this lively, illuminating new episode of our podcast: This Week in Health Tech.

In this jam-packed episode of This Week in Health Tech, Vik and Jimmy have an incredible chat with Dr. Brett Oliver (Chief Medical Information Officer, Baptist Health) to dive into several fascinating topics, such as the future of telehealth, digital transformation, interoperability, cultural change across the industry, and much more.

 

Global Health Tech Buzz:

  1. Chatbot Technology Still Has a Long Way to Go
  2. Meditech and Google Health to collaborate on clinical search in Expanse EHR 
  3. Top takeaways from HIMSS22: What CIOs need to know 

 

That’s all from Tido for now. Thanks for reading! Stay tuned next month for Issue. Subscribe Here.